Dima
Abstract:"Read the room" is a significant social reasoning capability in human daily life. Humans can infer others' mental states from subtle social cues. Previous social reasoning tasks and datasets lack complexity (e.g., simple scenes, basic interactions, incomplete mental state variables, single-step reasoning, etc.) and fall far short of the challenges present in real-life social interactions. In this paper, we contribute a valuable, high-quality, and comprehensive video dataset named R^3-VQA with precise and fine-grained annotations of social events and mental states (i.e., belief, intent, desire, and emotion) as well as corresponding social causal chains in complex social scenarios. Moreover, we include human-annotated and model-generated QAs. Our task R^3-VQA includes three aspects: Social Event Understanding, Mental State Estimation, and Social Causal Reasoning. As a benchmark, we comprehensively evaluate the social reasoning capabilities and consistencies of current state-of-the-art large vision-language models (LVLMs). Comprehensive experiments show that (i) LVLMs are still far from human-level consistent social reasoning in complex social scenarios; (ii) Theory of Mind (ToM) prompting can help LVLMs perform better on social reasoning tasks. We provide some of our dataset and codes in supplementary material and will release our full dataset and codes upon acceptance.
Abstract:As an essential component of logistics automation, the automated loading system is becoming a critical technology for enhancing operational efficiency and safety. Precise automatic positioning of the truck compartment, which serves as the loading area, is the primary step in automated loading. However, existing methods have difficulty adapting to truck compartments of various sizes, do not establish a unified coordinate system for LiDAR and mobile manipulators, and often exhibit reliability issues in cluttered environments. To address these limitations, our study focuses on achieving precise automatic positioning of key points in large, medium, and small fence-style truck compartments in cluttered scenarios. We propose an innovative wide field-of-view 3-D LiDAR vehicle compartment automatic localization system. For vehicles of various sizes, this system leverages the LiDAR to generate high-density point clouds within an extensive field-of-view range. By incorporating parking area constraints, our vehicle point cloud segmentation method more effectively segments vehicle point clouds within the scene. Our compartment key point positioning algorithm utilizes the geometric features of the compartments to accurately locate the corner points, providing stackable spatial regions. Extensive experiments on our collected data and public datasets demonstrate that this system offers reliable positioning accuracy and reduced computational resource consumption, leading to its application and promotion in relevant fields.
Abstract:Vision-language temporal alignment is a crucial capability for human dynamic recognition and cognition in real-world scenarios. While existing research focuses on capturing vision-language relevance, it faces limitations due to biased temporal distributions, imprecise annotations, and insufficient compositionally. To achieve fair evaluation and comprehensive exploration, our objective is to investigate and evaluate the ability of models to achieve alignment from a temporal perspective, specifically focusing on their capacity to synchronize visual scenarios with linguistic context in a temporally coherent manner. As a preliminary step, we present the statistical analysis of existing benchmarks and reveal the existing challenges from a decomposed perspective. To this end, we introduce SVLTA, the Synthetic Vision-Language Temporal Alignment derived via a well-designed and feasible control generation method within a simulation environment. The approach considers commonsense knowledge, manipulable action, and constrained filtering, which generates reasonable, diverse, and balanced data distributions for diagnostic evaluations. Our experiments reveal diagnostic insights through the evaluations in temporal question answering, distributional shift sensitiveness, and temporal alignment adaptation.
Abstract:We introduce Gemma 3, a multimodal addition to the Gemma family of lightweight open models, ranging in scale from 1 to 27 billion parameters. This version introduces vision understanding abilities, a wider coverage of languages and longer context - at least 128K tokens. We also change the architecture of the model to reduce the KV-cache memory that tends to explode with long context. This is achieved by increasing the ratio of local to global attention layers, and keeping the span on local attention short. The Gemma 3 models are trained with distillation and achieve superior performance to Gemma 2 for both pre-trained and instruction finetuned versions. In particular, our novel post-training recipe significantly improves the math, chat, instruction-following and multilingual abilities, making Gemma3-4B-IT competitive with Gemma2-27B-IT and Gemma3-27B-IT comparable to Gemini-1.5-Pro across benchmarks. We release all our models to the community.
Abstract:Recent advancements in video generation have significantly impacted daily life for both individuals and industries. However, the leading video generation models remain closed-source, resulting in a notable performance gap between industry capabilities and those available to the public. In this report, we introduce HunyuanVideo, an innovative open-source video foundation model that demonstrates performance in video generation comparable to, or even surpassing, that of leading closed-source models. HunyuanVideo encompasses a comprehensive framework that integrates several key elements, including data curation, advanced architectural design, progressive model scaling and training, and an efficient infrastructure tailored for large-scale model training and inference. As a result, we successfully trained a video generative model with over 13 billion parameters, making it the largest among all open-source models. We conducted extensive experiments and implemented a series of targeted designs to ensure high visual quality, motion dynamics, text-video alignment, and advanced filming techniques. According to evaluations by professionals, HunyuanVideo outperforms previous state-of-the-art models, including Runway Gen-3, Luma 1.6, and three top-performing Chinese video generative models. By releasing the code for the foundation model and its applications, we aim to bridge the gap between closed-source and open-source communities. This initiative will empower individuals within the community to experiment with their ideas, fostering a more dynamic and vibrant video generation ecosystem. The code is publicly available at https://github.com/Tencent/HunyuanVideo.
Abstract:Weather and climate forecasting is vital for sectors such as agriculture and disaster management. Although numerical weather prediction (NWP) systems have advanced, forecasting at the subseasonal-to-seasonal (S2S) scale, spanning 2 to 6 weeks, remains challenging due to the chaotic and sparse atmospheric signals at this interval. Even state-of-the-art deep learning models struggle to outperform simple climatology models in this domain. This paper identifies that optimization, instead of network structure, could be the root cause of this performance gap, and then we develop a novel multi-stage optimization strategy to close the gap. Extensive empirical studies demonstrate that our multi-stage optimization approach significantly improves key skill metrics, PCC and TCC, while utilizing the same backbone structure, surpassing the state-of-the-art NWP systems (ECMWF-S2S) by over \textbf{19-91\%}. Our research contests the recent study that direct forecasting outperforms rolling forecasting for S2S tasks. Through theoretical analysis, we propose that the underperformance of rolling forecasting may arise from the accumulation of Jacobian matrix products during training. Our multi-stage framework can be viewed as a form of teacher forcing to address this issue. Code is available at \url{https://anonymous.4open.science/r/Baguan-S2S-23E7/}
Abstract:In this work, we introduce Gemma 2, a new addition to the Gemma family of lightweight, state-of-the-art open models, ranging in scale from 2 billion to 27 billion parameters. In this new version, we apply several known technical modifications to the Transformer architecture, such as interleaving local-global attentions (Beltagy et al., 2020a) and group-query attention (Ainslie et al., 2023). We also train the 2B and 9B models with knowledge distillation (Hinton et al., 2015) instead of next token prediction. The resulting models deliver the best performance for their size, and even offer competitive alternatives to models that are 2-3 times bigger. We release all our models to the community.
Abstract:Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a new set of foundation models, called Llama 3. It is a herd of language models that natively support multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with 405B parameters and a context window of up to 128K tokens. This paper presents an extensive empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input and output safety. The paper also presents the results of experiments in which we integrate image, video, and speech capabilities into Llama 3 via a compositional approach. We observe this approach performs competitively with the state-of-the-art on image, video, and speech recognition tasks. The resulting models are not yet being broadly released as they are still under development.
Abstract:In conversational AI, personalizing dialogues with persona profiles and contextual understanding is essential. Despite large language models' (LLMs) improved response coherence, effective persona integration remains a challenge. In this work, we first study two common approaches for personalizing LLMs: textual prompting and direct fine-tuning. We observed that textual prompting often struggles to yield responses that are similar to the ground truths in datasets, while direct fine-tuning tends to produce repetitive or overly generic replies. To alleviate those issues, we propose \textbf{S}elective \textbf{P}rompt \textbf{T}uning (SPT), which softly prompts LLMs for personalized conversations in a selective way. Concretely, SPT initializes a set of soft prompts and uses a trainable dense retriever to adaptively select suitable soft prompts for LLMs according to different input contexts, where the prompt retriever is dynamically updated through feedback from the LLMs. Additionally, we propose context-prompt contrastive learning and prompt fusion learning to encourage the SPT to enhance the diversity of personalized conversations. Experiments on the CONVAI2 dataset demonstrate that SPT significantly enhances response diversity by up to 90\%, along with improvements in other critical performance indicators. Those results highlight the efficacy of SPT in fostering engaging and personalized dialogue generation. The SPT model code (https://github.com/hqsiswiliam/SPT) is publicly available for further exploration.
Abstract:Learning commonsense reasoning from visual contexts and scenes in real-world is a crucial step toward advanced artificial intelligence. However, existing video reasoning benchmarks are still inadequate since they were mainly designed for factual or situated reasoning and rarely involve broader knowledge in the real world. Our work aims to delve deeper into reasoning evaluations, specifically within dynamic, open-world, and structured context knowledge. We propose a new benchmark (SOK-Bench), consisting of 44K questions and 10K situations with instance-level annotations depicted in the videos. The reasoning process is required to understand and apply situated knowledge and general knowledge for problem-solving. To create such a dataset, we propose an automatic and scalable generation method to generate question-answer pairs, knowledge graphs, and rationales by instructing the combinations of LLMs and MLLMs. Concretely, we first extract observable situated entities, relations, and processes from videos for situated knowledge and then extend to open-world knowledge beyond the visible content. The task generation is facilitated through multiple dialogues as iterations and subsequently corrected and refined by our designed self-promptings and demonstrations. With a corpus of both explicit situated facts and implicit commonsense, we generate associated question-answer pairs and reasoning processes, finally followed by manual reviews for quality assurance. We evaluated recent mainstream large vision-language models on the benchmark and found several insightful conclusions. For more information, please refer to our benchmark at www.bobbywu.com/SOKBench.